ON STRATIFIED LATTICE-VALUED CONVERGENCE SPACES

author

  • Gunther Jager School of Mechanical Engineering, University of Applied Sciences Stralsund, D-18435 Stralsund, Germany
Abstract:

In this paper we provide a common framework for different stratified $LM$-convergence spaces introduced recently. To this end, we slightly alter the definition of a stratified $LMN$-convergence tower space. We briefly discuss the categorical properties and show that the category of these spaces is a Cartesian closed and extensional topological category. We also study the relationship of our category to the categories of stratified $L$-topological spaces and of enriched $LM$-fuzzy topological spaces.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

LATTICE-VALUED CATEGORIES OF LATTICE-VALUED CONVERGENCE SPACES

We study L-categories of lattice-valued convergence spaces. Suchcategories are obtained by fuzzifying" the axioms of a lattice-valued convergencespace. We give a natural example, study initial constructions andfunction spaces. Further we look into some L-subcategories. Finally we usethis approach to quantify how close certain lattice-valued convergence spacesare to being lattice-valued topologi...

full text

CONVERGENCE APPROACH SPACES AND APPROACH SPACES AS LATTICE-VALUED CONVERGENCE SPACES

We show that the category of convergence approach spaces is a simultaneously reective and coreective subcategory of the category of latticevalued limit spaces. Further we study the preservation of diagonal conditions, which characterize approach spaces. It is shown that the category of preapproach spaces is a simultaneously reective and coreective subcategory of the category of lattice-valued p...

full text

convergence approach spaces and approach spaces as lattice-valued convergence spaces

we show that the category of convergence approach spaces is a simultaneously reective and coreective subcategory of the category of latticevalued limit spaces. further we study the preservation of diagonal conditions, which characterize approach spaces. it is shown that the category of preapproach spaces is a simultaneously reective and coreective subcategory of the category of lattice-valued p...

full text

Lattice-valued convergence spaces and regularity

We define a regularity axiom for lattice-valued convergence spaces where the lattice is a complete Heyting algebra. To this end, we generalize the characterization of regularity by a ”dual form” of a diagonal condition. We show that our axiom ensures that a regular T1-space is separated and that regularity is preserved under initial constructions. Further we present an extension theorem for a c...

full text

Stratified $(L,M)$-fuzzy Q-convergence spaces

This paper presents the concepts of $(L,M)$-fuzzy Q-convergence spaces and stratified $(L,M)$-fuzzy Q-convergence spaces. It is shown that the category of stratified $(L,M)$-fuzzy Q-convergence spaces is a bireflective subcategory of the category of $(L,M)$-fuzzy Q-convergence spaces, and the former is a Cartesian-closed topological category. Also, it is proved that the category of stratified $...

full text

Stratified (L; M)-semiuniform convergence tower spaces

The notion of stratified (L, M)-semiuniform convergence tower spaces is introduced, which extends the notions ofprobabilistic semiuniform convergence spaces and lattice-valued semiuniform convergence spaces. The resulting categoryis shown to be a strong topological universe. Besides, the relations between our category and that of stratified (L, M)-filter tower spaces are studied.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 6

pages  149- 164

publication date 2017-12-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023